The connection between hashish and heart problems: clearing the haze

The connection between hashish and heart problems: clearing the haze


  • Web page, R. L. et al. Medical marijuana, leisure hashish, and cardiovascular well being: a scientific assertion from the American Coronary heart Affiliation. Circulation 142, e131–e152 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chandy, M. et al. Adversarial affect of hashish on human well being. Annu. Rev. Med. 75, 353–367 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bridgeman, M. B. & Abazia, D. T. Medicinal hashish: historical past, pharmacology, and implications for the acute care setting. P T 42, 180–188 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryan, J. E., McCabe, S. E. & Boyd, C. J. Medicinal hashish: coverage, sufferers, and suppliers. Coverage Polit. Nurs. Pract. 22, 126–133 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffman, A. F. & Lupica, C. R. Synaptic targets of Δ9-tetrahydrocannabinol within the central nervous system. Chilly Spring Harb. Perspect. Med. 3, a012237 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishna Kumar, Ok. et al. Construction of a signaling cannabinoid receptor 1-G protein complicated. Cell 176, 448–458.e12 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Sugamura, Ok. et al. Activated endocannabinoid system in coronary artery illness and antiinflammatory results of cannabinoid 1 receptor blockade on macrophages. Circulation 119, 28–36 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Netherland, C. D., Pickle, T. G., Bales, A. & Thewke, D. P. Cannabinoid receptor kind 2 (CB2) deficiency alters atherosclerotic lesion formation in hyperlipidemic Ldlr-null mice. Atherosclerosis 213, 102–108 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoyer, F. F. et al. Atheroprotection through cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J. Mol. Cell Cardiol. 51, 1007–1014 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Pacher, P., Steffens, S., Haskó, G., Schindler, T. H. & Kunos, G. Cardiovascular results of marijuana and artificial cannabinoids: the nice, the unhealthy, and the ugly. Nat. Rev. Cardiol. 15, 151–166 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Whiting, P. F. et al. Cannabinoids for medical use: a scientific assessment and meta-analysis. JAMA 313, 2456–2473 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Bilbao, A. & Spanagel, R. Medical cannabinoids: a pharmacology-based systematic assessment and meta-analysis for all related medical indications. BMC Med. 20, 259 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bicket, M. C., Stone, E. M. & McGinty, E. E. Use of hashish and different ache remedies amongst adults with persistent ache in US states with medical hashish packages. JAMA Netw. Open. 6, e2249797 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zehra, A. et al. Hashish habit and the mind: a assessment. J. Neuroimmune Pharmacol. 13, 438–452 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Secades-Villa, R., Garcia-Rodriguez, O., Jin, C. J., Wang, S. & Blanco, C. Likelihood and predictors of the hashish gateway impact: a nationwide examine. Int. J. Drug. Coverage 26, 135–142 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Volkow, N. D., Baler, R. D., Compton, W. M. & Weiss, S. R. Adversarial well being results of marijuana use. N. Engl. J. Med. 370, 2219–2227 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, T. T. et al. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular irritation. Cell 185, 1676–1693.e23 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeFilippis, E. M. et al. Cocaine and marijuana use amongst younger adults with myocardial infarction. J. Am. Coll. Cardiol. 71, 2540–2551 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patton, D. V. A historical past of United States hashish legislation. J. Legislation Well being 34, 1–29 (2020).

    PubMed 

    Google Scholar
     

  • Corridor, W. et al. Public well being implications of legalising the manufacturing and sale of hashish for medicinal and leisure use. Lancet 394, 1580–1590 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mead, A. Authorized and regulatory points governing hashish and cannabis-derived merchandise in america. Entrance. Plant. Sci. 10, 697 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lampe, J. R. Authorized penalties of rescheduling marijuana. Congressional Analysis Service crsreports.congress.gov/product/pdf/LSB/LSB11105 (2024).

  • Shirah, B. H., Ahmed, M. M. & Saleh, R. A. in Medicinal Utilization of Hashish and Cannabinoids (eds Preedy, V. R., Patel, V. B. & Martin, C. R.) Ch. 5, 51–61 (Tutorial Press, 2023).

  • Bahji, A. & Stephenson, C. Worldwide views on the implications of hashish legalization: a scientific assessment & thematic evaluation. Int. J. Env. Res. Public. Well being 16, 3095 (2019).

    Article 

    Google Scholar
     

  • Rotermann, M. What has modified since hashish was legalized? Well being Rep. 31, 11–20 (2020).

    PubMed 

    Google Scholar
     

  • Martins, S. S. et al. Racial and ethnic variations in hashish use following legalization in US states with medical hashish legal guidelines. JAMA Netw. Open. 4, e2127002 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chemtob, D. Forbes Each day: The Budding $28B Hemp Market’s Feud with Marijuana. Forbes www.forbes.com/websites/daniellechemtob/2024/04/19/forbes-daily-the-budding-28b-hemp-markets-feud-with-marijuana/ (2024).

  • Fischer, B., Jutras-Aswad, D. & Corridor, W. Outcomes related to nonmedical hashish legalization coverage in Canada: taking inventory on the 5-year mark. CMAJ 195, E1351–E1353 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chong, W. W., Acar, Z. I., West, M. L. & Wong, F. A scoping assessment on the medical and leisure use of hashish in the course of the COVID-19 pandemic. Hashish Cannabinoid Res. 7, 591–602 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackie, Ok. Cannabinoid receptors as therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 46, 101–122 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Movahed, P. et al. Vascular results of anandamide and N-acylvanillylamines within the human forearm and pores and skin microcirculation. Br. J. Pharmacol. 146, 171–179 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacher, P., Batkai, S. & Kunos, G. Cardiovascular pharmacology of cannabinoids. Handb. Exp. Pharmacol. 599-625 (2005).

  • Pacher, P., Batkai, S. & Kunos, G. Blood stress regulation by endocannabinoids and their receptors. Neuropharmacology 48, 1130–1138 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batkai, S. et al. Endocannabinoids performing at CB1 receptors mediate the cardiac contractile dysfunction in vivo in cirrhotic rats. Am. J. Physiol. Coronary heart Circ. Physiol 293, H1689–H1695 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Valenta, I. et al. Feasibility analysis of myocardial cannabinoid kind 1 receptor imaging in weight problems: a translational strategy. JACC Cardiovasc. Imaging 11, 320–332 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajesh, M. et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, irritation, and fibrosis in diabetic cardiomyopathy. Diabetes 61, 716–727 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukhopadhyay, P. et al. Pharmacological inhibition of CB1 cannabinoid receptor protects towards doxorubicin-induced cardiotoxicity. J. Am. Coll. Cardiol. 50, 528–536 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mukhopadhyay, P. et al. CB1 cannabinoid receptors promote oxidative stress and cell demise in murine fashions of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc. Res. 85, 773–784 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Rajesh, M. et al. Cannabinoid receptor 2 activation alleviates diabetes-induced cardiac dysfunction, irritation, oxidative stress, and fibrosis. Geroscience 44, 1727–1741 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matyas, C. et al. Interaction of liver–coronary heart inflammatory axis and cannabinoid 2 receptor signaling in an experimental mannequin of hepatic cardiomyopathy. Hepatology 71, 1391–1407 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Molica, F. et al. Cannabinoid receptor CB2 protects towards balloon-induced neointima formation. Am. J. Physiol. Coronary heart Circ. Physiol 302, H1064–H1074 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from goal validation to medical research. Nat. Rev. Drug. Discov. 21, 41–59 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Pertwee, R. G. Receptors and channels focused by artificial cannabinoid receptor agonists and antagonists. Curr. Med. Chem. 17, 1360–1381 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Després, J. P., Golay, A. & Sjöström, L. Rimonabant in Weight problems-Lipids Examine Group Results of rimonabant on metabolic danger elements in chubby sufferers with dyslipidemia. N. Engl. J. Med. 353, 2121–2134 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Onakpoya, I. J., Heneghan, C. J. & Aronson, J. Ok. Worldwide withdrawal of medicinal merchandise due to antagonistic drug reactions: a scientific assessment and evaluation. Crit. Rev. Toxicol. 46, 477–489 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cinar, R., Iyer, M. R. & Kunos, G. The therapeutic potential of second and third era CB1R antagonists. Pharmacol. Ther. 208, 107477 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crater, G. D., Lalonde, Ok., Ravenelle, F., Harvey, M. & Despres, J. P. Results of CB1R inverse agonist, INV-202, in sufferers with options of metabolic syndrome. A randomized, placebo-controlled, double-blind part 1b examine. Diabetes Obes. Metab. 26, 642–649 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hashiesh, H. M., Sharma, C., Goyal, S. N., Jha, N. Ok. & Ojha, S. Pharmacological properties, therapeutic potential and molecular mechanisms of JWH133, a CB2 receptor-selective agonist. Entrance. Pharmacol. 12, 702675 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosar, M. et al. Patent assessment of cannabinoid receptor kind 2 (CB2R) modulators (2016–current). Knowledgeable. Opin. Ther. Pat. 34, 665–700 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Smoum, R. et al. Editorial: therapeutic potential of the cannabinoid CB2 receptor. Entrance. Pharmacol. 13, 1039564 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morales, P., Hernandez-Folgado, L., Goya, P. & Jagerovic, N. Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent replace. Knowledgeable. Opin. Ther. Pat. 26, 843–856 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Oparil, S. et al. Hypertension. Nat. Rev. Dis. Primers 4, 18014 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshaarawy, O. & Elbaz, H. A. Hashish use and blood stress ranges: United States Nationwide Well being and Vitamin Examination Survey, 2005–2012. J. Hypertens. 34, 1507–1512 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Golosova, D., Levchenko, V., Kravtsova, O., Palygin, O. & Staruschenko, A. Acute and long-term results of cannabinoids on hypertension and kidney harm. Sci. Rep. 12, 6080 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sultan, S. R., Millar, S. A., O’Sullivan, S. E. & England, T. J. A scientific assessment and meta-analysis of the in vivo haemodynamic results of Δ8-tetrahydrocannabinol. Prescription drugs 11, 13 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Intengan, H. D. & Schiffrin, E. L. Construction and mechanical properties of resistance arteries in hypertension: function of adhesion molecules and extracellular matrix determinants. Hypertension 36, 312–318 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Corroon, J., Grant, I., Bradley, R. & Allison, M. A. Traits in hashish use, blood stress, and hypertension in middle-aged adults: findings from NHANES, 2009–2018. Am. J. Hypertens. 36, 651–659 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallee, A. Affiliation between hashish use and blood stress ranges in keeping with comorbidities and socioeconomic standing. Sci. Rep. 13, 2069 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batkai, S. et al. Endocannabinoids performing at cannabinoid-1 receptors regulate cardiovascular operate in hypertension. Circulation 110, 1996–2002 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godlewski, G. et al. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular operate in hypertension with out antagonistic metabolic results. Chem. Biol. 17, 1256–1266 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, J. A. et al. Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature 390, 518–521 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Varga, Ok., Wagner, J. A., Bridgen, D. T. & Kunos, G. Platelet- and macrophage-derived endogenous cannabinoids are concerned in endotoxin-induced hypotension. FASEB J. 12, 1035–1044 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Batkai, S. et al. Endocannabinoids performing at vascular CB1 receptors mediate the vasodilated state in superior liver cirrhosis. Nat. Med. 7, 827–832 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Ros, J. et al. Endogenous cannabinoids: a brand new system concerned within the homeostasis of arterial stress in experimental cirrhosis within the rat. Gastroenterology 122, 85–93 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Shan, R. et al. Activation of cannabinoid kind 2 receptor in microglia reduces neuroinflammation by means of inhibiting cardio glycolysis to alleviate hypertension. Biomolecules 14, 333 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. Cannabidiol protects towards acute aortic dissection by inhibiting macrophage infiltration and PMAIP1-induced vascular easy muscle cell apoptosis. J. Mol. Cell Cardiol. 189, 38–51 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Curioni, C. & Andre, C. Rimonabant for chubby or weight problems. Cochrane Database Syst. Rev. 2006, CD006162 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidot, D. C. et al. Metabolic syndrome amongst marijuana customers in america: an evaluation of Nationwide Well being and Vitamin Examination Survey knowledge. Am. J. Med. 129, 173–179 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mousavi, S. E., Tondro Anamag, F. & Sanaie, S. Affiliation between hashish use and danger of diabetes mellitus kind 2: a scientific assessment and meta-analysis. Phytother. Res. 37, 5092–5108 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ravi, D., Ghasemiesfe, M., Korenstein, D., Cascino, T. & Keyhani, S. Associations between marijuana use and cardiovascular danger elements and outcomes: a scientific assessment. Ann. Intern. Med. 168, 187–194 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Despres, J. P. et al. Impact of rimonabant on the high-triglyceride/low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fats: the ADAGIO-Lipids trial. Arterioscler. Thromb. Vasc. Biol. 29, 416–423 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Muniyappa, R. et al. Metabolic results of persistent hashish smoking. Diabetes Care 36, 2415–2422 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casier, I., Vanduynhoven, P., Haine, S., Vrints, C. & Jorens, P. G. Is current hashish use related to acute coronary syndromes? An illustrative case sequence. Acta Cardiol. 69, 131–136 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Jeffers, A. M., Glantz, S., Byers, A. L. & Keyhani, S. Affiliation of hashish use with cardiovascular outcomes amongst US adults. J. Am. Coronary heart Assoc. 13, e030178 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frost, L., Mostofsky, E., Rosenbloom, J. I., Mukamal, Ok. J. & Mittleman, M. A. Marijuana use and long-term mortality amongst survivors of acute myocardial infarction. Am. Coronary heart J. 165, 170–175 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Libby, P. Irritation in atherosclerosis. Nature 420, 868–8743 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Rajesh, M. et al. Cannabinoid-1 receptor activation induces reactive oxygen species-dependent and -independent mitogen-activated protein kinase activation and cell demise in human coronary artery endothelial cells. Br. J. Pharmacol. 160, 688–700 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Remessy, A. B. et al. Cannabinoid 1 receptor activation contributes to vascular irritation and cell demise in a mouse mannequin of diabetic retinopathy and a human retinal cell line. Diabetologia 54, 1567–1578 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paik, D. T., Chandy, M. & Wu, J. C. Affected person and disease-specific induced pluripotent stem cells for discovery of customized cardiovascular medication and therapeutics. Pharmacol. Rev. 72, 320–342 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Z., Kulkarni, Ok., Zhu, W. & Hu, M. Bioavailability and pharmacokinetics of genistein: mechanistic research on its ADME. Anticancer. Brokers Med. Chem. 12, 1264–1280 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dol-Gleizes, F. et al. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 29, 12–18 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Steffens, S. et al. Low dose oral cannabinoid remedy reduces development of atherosclerosis in mice. Nature 434, 782–786 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Perez-Reyes, M., Owens, S. M. & Di Guiseppi, S. The medical pharmacology and dynamics of marihuana cigarette smoking. J. Clin. Pharmacol. 21, 201S–207S (1981).

    Article 
    PubMed 

    Google Scholar
     

  • Huestis, M. A. Human cannabinoid pharmacokinetics. Chem. Biodivers. 4, 1770–1804 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, A. et al. Hashish for persistent ache: cardiovascular security in a nationwide Danish examine. Eur. Coronary heart J. 45, 475–484 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Patel, R. S., Gonzalez, M. D., Ajibawo, T. & Baweja, R. Hashish use dysfunction and elevated danger of arrhythmia-related hospitalization in younger adults. Am. J. Addict. 30, 578–584 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chouairi, F. et al. Hashish use dysfunction amongst atrial fibrillation admissions, 2008-2018. Pacing Clin. Electrophysiol. 44, 1934–1938 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gillett, L. et al. Arrhythmic results of hashish in ischemic coronary heart illness. Hashish Cannabinoid Res. 8, 867–876 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richards, J. R. Mechanisms for the danger of acute coronary syndrome and arrhythmia related to phytogenic and artificial cannabinoid use. J. Cardiovasc. Pharmacol. Ther. 25, 508–522 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kariyanna, P. T. et al. Marijuana induced myocarditis: a brand new entity of poisonous myocarditis. Am. J. Med. Case Rep. 6, 169–172 (2018).

    Article 

    Google Scholar
     

  • Khanji, M. Y. et al. Affiliation between leisure hashish use and cardiac construction and performance. JACC Cardiovasc. Imaging 13, 886–888 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bene-Alhasan, Y. et al. Each day marijuana use is related to incident coronary heart failure: “All of Us” analysis program [abstract]. Circulation 148 (Suppl. 1), 13812 (2023).


    Google Scholar
     

  • Chen, B. et al. Endothelial cannabinoid CB1 receptor deficiency reduces arterial irritation and lipid uptake in response to atheroprone shear stress. Preprint at bioRxiv, https://doi.org/10.1101/2024.05.15.594375 (2024).

  • Mukhopadhyay, P. et al. Fatty acid amide hydrolase is a key regulator of endocannabinoid-induced myocardial tissue harm. Free. Radic. Biol. Med. 50, 179–195 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Slavic, S. et al. Cannabinoid receptor 1 inhibition improves cardiac operate and remodelling after myocardial infarction and in experimental metabolic syndrome. J. Mol. Med. 91, 811–823 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Defer, N. et al. The cannabinoid receptor kind 2 promotes cardiac myocyte and fibroblast survival and protects towards ischemia/reperfusion-induced cardiomyopathy. FASEB J. 23, 2120–2130 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • McPartland, J. M., Duncan, M., Di Marzo, V. & Pertwee, R. G. Are cannabidiol and Δ9-tetrahydrocannabivarin adverse modulators of the endocannabinoid system? A scientific assessment. Br. J. Pharmacol. 172, 737–753 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfulaij, N. et al. Cannabinoids, the center of the matter. J. Am. Coronary heart Assoc. 7, e009099 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, W. S. et al. Cannabidiol limits T cell-mediated persistent autoimmune myocarditis: implications to autoimmune issues and organ transplantation. Mol. Med. 22, 136–146 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, E. et al. Cannabidiol protects towards doxorubicin-induced cardiomyopathy by modulating mitochondrial operate and biogenesis. Mol. Med. 21, 38–45 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajesh, M. et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell demise signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 56, 2115–2125 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampson, A. J., Grimaldi, M., Axelrod, J. & Wink, D. Cannabidiol and (–)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl Acad. Sci. USA 95, 8268–8273 (1998).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacher, P., Kogan, N. M. & Mechoulam, R. Past THC and endocannabinoids. Annu. Rev. Pharmacol. Toxicol. 60, 637–659 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gonca, E. & Darici, F. The impact of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the function of adenosine A1 receptors. J. Cardiovasc. Pharmacol. Ther. 20, 76–83 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Stanley, C. P., Hind, W. H., Tufarelli, C. & O’Sullivan, S. E. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries through CB1 activation. Cardiovasc. Res. 107, 568–578 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumric, M., Bozic, J., Dujic, G., Vrdoljak, J. & Dujic, Z. Power results of efficient oral cannabidiol supply on 24-h ambulatory blood stress and vascular outcomes in handled and untreated hypertension (HYPER-H21-4): examine protocol for a randomized, placebo-controlled, and crossover examine. J. Pers. Med. 12, 1037 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nationwide Convention of State Legislatures. State Medical Hashish Legal guidelines NCSL www.ncsl.org/well being/state-medical-cannabis-laws (2024).

  • Balachandran, P., Elsohly, M. & Hill, Ok. P. Cannabidiol interactions with drugs, illicit substances, and alcohol: a complete assessment. J. Gen. Intern. Med. 36, 2074–2084 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, A., Straube, S., Fisher, E. & Eccleston, C. Cannabidiol (CBD) merchandise for ache: ineffective, costly, and with potential harms. J. Ache 25, 833–842 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Bhat, T. A., Kalathil, S. G., Goniewicz, M. L., Hutson, A. & Thanavala, Y. Not all vaping is similar: differential pulmonary results of vaping cannabidiol versus nicotine. Thorax 78, 922–932 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rossheim, M. E., LoParco, C. R., Henry, D., Trangenstein, P. J. & Walters, S. T. Delta-8, delta-10, HHC, THC-O, THCP, and THCV: what ought to we name these merchandise? J. Stud. Alcohol. Medication 84, 357–360 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • O’Mahony, B., O’Malley, A., Kerrigan, O. & McDonald, C. HHC-induced psychosis: a case sequence of psychotic sickness triggered by a extensively out there semisynthetic cannabinoid. Ir. J. Psychol. Med. https://doi.org/10.1017/ipm.2024.3 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Harlow, A. F., Miech, R. A. & Leventhal, A. M. Adolescent Δ8-THC and marijuana use within the US. JAMA 331, 861–865 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Govindarajan, R. Ok. et al. Biosynthesis of phytocannabinoids and structural insights: a assessment. Metabolites 13, 442 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raup-Konsavage, W. M. et al. Environment friendly synthesis for altering facet chain size on cannabinoid molecules and their results in chemotherapy and chemotherapeutic induced neuropathic ache. Biomolecules 12, 1869 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nachnani, R., Raup-Konsavage, W. M. & Vrana, Ok. E. The pharmacological case for cannabigerol. J. Pharmacol. Exp. Ther. 376, 204–212 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Peters, E. N. et al. Pharmacokinetics of cannabichromene in a medical hashish product additionally containing cannabidiol and Δ9-tetrahydrocannabinol: a pilot examine. Eur. J. Clin. Pharmacol. 78, 259–265 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Abioye, A. et al. Δ9-Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic profit for the administration of weight problems and diabetes. J. Hashish Res. 2, 6 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadoon, Ok. A. et al. Efficacy and security of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in sufferers with kind 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot examine. Diabetes Care 39, 1777–1786 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Dziemitko, S., Harasim-Symbor, E. & Chabowski, A. How do phytocannabinoids have an effect on cardiovascular well being? An replace on the commonest cardiovascular illnesses. Ther. Adv. Power Dis. 14, 20406223221143239 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeFilippis, E. M. et al. Marijuana use in sufferers with heart problems: JACC assessment matter of the week. J. Am. Coll. Cardiol. 75, 320–332 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bedi, G., Cooper, Z. D. & Haney, M. Subjective, cognitive and cardiovascular dose-effect profile of nabilone and dronabinol in marijuana people who smoke. Addict. Biol. 18, 872–881 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zongo, A. et al. Medical hashish authorization and the danger of cardiovascular occasions: a longitudinal cohort examine. BMC Cardiovasc. Disord. 21, 426 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Devinsky, O. et al. Impact of cannabidiol on drop seizures within the Lennox–Gastaut syndrome. N. Engl. J. Med. 378, 1888–1897 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Devinsky, O. et al. Trial of cannabidiol for drug-resistant seizures within the Dravet syndrome. N. Engl. J. Med. 376, 2011–2020 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmed, A. et al. Results of digoxin at low serum concentrations on mortality and hospitalization in coronary heart failure: a propensity-matched examine of the DIG trial. Int. J. Cardiol. 123, 138–146 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, Ok. et al. Cannabidiol publicity throughout gestation results in antagonistic cardiac outcomes early in postnatal life in male rat offspring. Hashish Cannabinoid Res. 9, 781–796 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • D’hooghe, M. et al. Sativex(R) (nabiximols) cannabinoid oromucosal spray in sufferers with resistant a number of sclerosis spasticity: the Belgian expertise. BMC Neurol. 21, 227 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurmikko, T. J. et al. Sativex efficiently treats neuropathic ache characterised by allodynia: a randomised, double-blind, placebo-controlled medical trial. Ache 133, 210–220 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, A. J. et al. “Zombie” outbreak attributable to the artificial cannabinoid AMB-FUBINACA in New York. N. Engl. J. Med. 376, 235–242 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Fantegrossi, W. E., Moran, J. H., Radominska-Pandya, A. & Prather, P. L. Distinct pharmacology and metabolism of K2 artificial cannabinoids in comparison with Δ9-THC: mechanism underlying larger toxicity? Life Sci. 97, 45–54 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hermanns-Clausen, M. et al. Acute negative effects after consumption of the brand new artificial cannabinoids AB-CHMINACA and MDMB-CHMICA. Clin. Toxicol. 56, 404–411 (2018).

    Article 

    Google Scholar
     

  • Mir, A., Obafemi, A., Younger, A. & Kane, C. Myocardial infarction related to use of the artificial cannabinoid K2. Pediatrics 128, e1622–e1627 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Jayakumar, N. et al. Co-use and mixing tobacco with hashish amongst Ontario adults. Nicotine Tob. Res. 23, 171–178 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, T. C., Tashkin, D. P., Djahed, B. & Rose, J. E. Pulmonary hazards of smoking marijuana as in contrast with tobacco. N. Engl. J. Med. 318, 347–351 (1988).

    Article 
    PubMed 

    Google Scholar
     

  • Hancox, R. J. et al. Results of hashish on lung operate: a population-based cohort examine. Eur. Respir. J. 35, 42–47 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Tan, W. C. et al. The results of marijuana smoking on lung operate in older individuals. Eur. Respir. J. 54, 1900826 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Crosland, B. A. et al. Threat of antagonistic neonatal outcomes after mixed prenatal hashish and nicotine publicity. JAMA Netw. Open. 7, e2410151 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammond, C. J. et al. Co-occurring tobacco and hashish use in adolescents: dissociable relationships with mediofrontal electrocortical exercise throughout reward suggestions processing. Neuroimage Clin. 30, 102592 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogel, E. A., Rubinstein, M. L., Prochaska, J. J. & Ramo, D. E. Associations between marijuana use and tobacco cessation outcomes in younger adults. J. Subst. Abuse Deal with. 94, 69–73 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panlilio, L. V., Solinas, M., Matthews, S. A. & Goldberg, S. R. Earlier publicity to THC alters the reinforcing efficacy and anxiety-related results of cocaine in rats. Neuropsychopharmacology 32, 646–657 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bierut, L. J. et al. Familial transmission of substance dependence: alcohol, marijuana, cocaine, and recurring smoking: a report from the Collaborative Examine on the Genetics of Alcoholism. Arch. Gen. Psychiatry 55, 982–988 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Hartz, S. M. et al. Elevated genetic vulnerability to smoking at CHRNA5 in early-onset people who smoke. Arch. Gen. Psychiatry 69, 854–860 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lubke, G. H., Stephens, S. H., Lessem, J. M., Hewitt, J. Ok. & Ehringer, M. A. The CHRNA5/A3/B4 gene cluster and tobacco, alcohol, hashish, inhalants and different substance use initiation: replication and new findings utilizing combination analyses. Behav. Genet. 42, 636–646 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibsen, M. S., Connor, M. & Glass, M. Cannabinoid CB1 and CB2 receptor signaling and bias. Hashish Cannabinoid Res. 2, 48–60 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, C. P. et al. Hashish inhalation acutely reduces muscle sympathetic nerve exercise in people. Circulation 146, 1972–1974 (2022).

    Article 
    PubMed 

    Google Scholar
     



  • Supply hyperlink

    Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *