Propagation of neuronal micronuclei regulates microglial traits

Propagation of neuronal micronuclei regulates microglial traits


  • Marquez-Ropero, M., Benito, E., Plaza-Zabala, A. & Sierra, A. Microglial corpse clearance: classes from macrophages. Entrance Immunol 11, 506 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the mind in response to tumor necrosis factoralpha signaling throughout peripheral organ irritation. J. Neurosci. 29, 2089–2102 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Q. & Barres, B. A. Microglia and macrophages in mind homeostasis and illness. Nat. Rev. Immunol. 18, 225–242 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and illness. Annu Rev Physiol 79, 619–643 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ueno, M. et al. Layer V cortical neurons require microglial assist for survival throughout postnatal improvement. Nat. Neurosci. 16, 543–551 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the variety of neural precursor cells within the growing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aarum, J., Sandberg, Okay., Haeberlein, S. L. & Persson, M. A. Migration and differentiation of neural precursor cells might be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983–15988 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyamoto, A. et al. Microglia contact induces synapse formation in growing somatosensory cortex. Nat. Commun. 7, 12540 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paolicelli, R. C. et al. Synaptic pruning by microglia is important for regular mind improvement. Science 333, 1456–1458 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an exercise and complement-dependent method. Neuron 74, 691–705 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badimon, A. et al. Adverse suggestions management of neuronal exercise by microglia. Nature 586, 417–423 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit construction and performance. Traits Neurosci. 36, 209–217 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prinz, M. & Priller, J. Microglia and mind macrophages within the molecular age: from origin to neuropsychiatric illness. Nat. Rev. Neurosci. 15, 300–312 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginhoux, F. et al. Destiny mapping evaluation reveals that grownup microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utz, S. G. et al. Early destiny defines microglia and non-parenchymal mind macrophage improvement. Cell 181, 557–573 e518 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hattori, Y. et al. CD206+ macrophages transventricularly infiltrate the early embryonic cerebral wall to distinguish into microglia. Cell Rep. 42, 112092 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paolicelli, R. C. et al. Microglia states and nomenclature: a area at its crossroads. Neuron 110, 3458–3483 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kierdorf, Okay., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and performance in well being and illness. Nat. Rev. Neurosci. 20, 547–562 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages-from origin to illness modulation. Annu. Rev. Immunol. 39, 251–277 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taketomi, T. & Tsuruta, F. In direction of an understanding of microglia and border-associated macrophages. Biology (Basel) 12, 1091 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are extremely dynamic surveillants of mind parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia straight monitor the practical state of synapses in vivo and decide the destiny of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosher, Okay. I. et al. Neural progenitor cells regulate microglia capabilities and exercise. Nat. Neurosci. 15, 1485–1487 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pasciuto, E. et al. Microglia require CD4 T cells to finish the fetal-to-adult transition. Cell 182, 625–640 e624 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crasta, Okay. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raab, M. et al. ESCRT III repairs nuclear envelope ruptures throughout cell migration to restrict DNA harm and cell loss of life. Science 352, 359–362 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denais, C. M. et al. Nuclear envelope rupture and restore throughout most cancers cell migration. Science 352, 353–358 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenech, M. et al. Micronuclei and illness—report of HUMN venture workshop at Rennes 2019 EEMGS convention. Mutat. Res. 850-851, 503133 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shi, L., Qalieh, A., Lam, M. M., Keil, J. M. & Kwan, Okay. Y. Sturdy elimination of genome-damaged cells safeguards towards mind somatic aneuploidy following Knl1 deletion. Nat. Commun. 10, 2588 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C. Z. et al. Chromothripsis from DNA harm in micronuclei. Nature 522, 179–184 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papathanasiou, S. et al. Heritable transcriptional defects from aberrations of nuclear structure. Nature 619, 184–192 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Y. F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harding, S. M. et al. Mitotic development following DNA harm permits sample recognition inside micronuclei. Nature 548, 466–470 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dou, Z. et al. Cytoplasmic chromatin triggers irritation in senescence and most cancers. Nature 550, 402–406 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackenzie, Okay. J. et al. cGAS surveillance of micronuclei hyperlinks genome instability to innate immunity. Nature 548, 461–465 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments by way of cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yano, S. et al. A MATLAB-based program for three-dimensional quantitative evaluation of micronuclei reveals that neuroinflammation induces micronuclei formation within the mind. Sci. Rep. 11, 18360 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekine, Okay., Honda, T., Kawauchi, T., Kubo, Okay. & Nakajima, Okay. The outermost area of the growing cortical plate is essential for each the change of the radial migration mode and the Dab1-dependent ‘inside-out’ lamination within the neocortex. J. Neurosci. 31, 9426–9439 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tabata, H. & Nakajima, Okay. Environment friendly in utero gene switch system to the growing mouse mind utilizing electroporation: visualization of neuronal migration within the growing cortex. Neuroscience 103, 865–872 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kubo, Okay. et al. Ectopic Reelin induces neuronal aggregation with a standard birthdate-dependent ‘inside-out’ alignment within the growing neocortex. J. Neurosci. 30, 10953–10966 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mo, A. et al. Epigenomic signatures of neuronal range within the mammalian mind. Neuron 86, 1369–1384 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frey, T. et al. Age-associated discount of nuclear form dynamics in excitatory neurons of the visible cortex. Getting old Cell 22, e13925 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rello-Varona, S. et al. Autophagic removing of micronuclei. Cell Cycle 11, 170–176 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto, H., Zhang, S. & Mizushima, N. Autophagy genes in biology and illness. Nat. Rev. Genet. 24, 382–400 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, X. et al. CCT2 is an aggrephagy receptor for clearance of strong protein aggregates. Cell 185, 1325–1345 e1322 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, S. et al. Evaluation of fractalkine receptor CX(3)CR1 operate by focused deletion and inexperienced fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abe, T. et al. Institution of conditional reporter mouse strains at ROSA26 locus for reside cell imaging. Genesis 49, 579–590 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ginhoux, F., Lim, S., Hoeffel, G., Low, D. & Huber, T. Origin and differentiation of microglia. Entrance. Cell Neurosci. 7, 45 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennett, M. L. et al. New instruments for learning microglia within the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fritsch, L. E. et al. Sort I interferon response is mediated by NLRX1-cGAS-STING signaling in mind damage. Entrance. Mol. Neurosci. 15, 852243 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human mind. Nat. Neurosci. 25, 306–316 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mason, C. E. et al. Standardizing the following technology of bioinformatics software program improvement with BioHDF (HDF5). Adv. Exp. Med. Biol. 680, 693–700 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • McCarthy, D. J., Chen, Y. & Smyth, G. Okay. Differential expression evaluation of multifactor RNA-Seq experiments with respect to organic variation. Nucleic Acids Res. 40, 4288–4297 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and practical variations with mouse. Neuron 89, 37–53 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Developmental heterogeneity of microglia and mind myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223 e210 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeisel, A. et al. Mind construction. Cell sorts within the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Hove, H. et al. A single-cell atlas of mouse mind macrophages reveals distinctive transcriptional identities formed by ontogeny and tissue surroundings. Nat. Neurosci. 22, 1021–1035 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Krupina, Okay., Goginashvili, A. & Cleveland, D. W. Causes and penalties of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drieu, A. et al. Parenchymal border macrophages regulate the stream dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. Macrophages mediate the restore of mind vascular rupture by way of direct bodily adhesion and mechanical traction. Immunity 44, 1162–1176 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Masuda, T. et al. Specification of CNS macrophage subsets happens postnatally in outlined niches. Nature 604, 740–748 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponpuak, M. et al. Secretory autophagy. Curr. Opin. Cell Biol. 35, 106–116 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ejlerskov, P. et al. Tubulin polymerization-promoting protein (TPPP/p25alpha) promotes unconventional secretion of alpha-synuclein by way of exophagy by impairing autophagosome-lysosome fusion. J. Biol. Chem. 288, 17313–17335 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savina, A., Vidal, M. & Colombo, M. I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115, 2505–2515 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuboyama, Okay. et al. The ATG conjugation techniques are necessary for degradation of the internal autophagosomal membrane. Science 354, 1036–1041 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Budnik, V., Ruiz-Canada, C. & Wendler, F. Extracellular vesicles spherical off communication within the nervous system. Nat. Rev. Neurosci. 17, 160–172 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christ, L., Raiborg, C., Wenzel, E. M., Campsteijn, C. & Stenmark, H. Mobile capabilities and molecular mechanisms of the ESCRT membrane-scission equipment. Traits Biochem. Sci 42, 42–56 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to control necroptotic cell loss of life and its penalties. Cell 169, 286–300 e216 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Claude-Taupin, A. et al. ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nat. Cell Biol. 23, 846–858 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayakawa, Okay. et al. Switch of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, A. U. et al. Fragmented mitochondria launched from microglia set off A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22, 1635–1648 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokoi, A. et al. Mechanisms of nuclear content material loading to exosomes. Sci. Adv. 5, eaax8849 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic goal in inflammatory ailments. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulen, M. F. et al. cGAS-STING drives ageing-related irritation and neurodegeneration. Nature 620, 374–380 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, B. D., Snyder, S. H. & Bohr, V. A. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and getting old. Traits Neurosci. 44, 83–96 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol Cell 75, 372–381.e375 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carozza, J. A. et al. Extracellular cGAMP is a most cancers cell-produced immunotransmitter concerned in radiation-induced anti-cancer immunity. Nat Most cancers 1, 184–196 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bakhoum, S. F. et al. Chromosomal instability drives metastasis by way of a cytosolic DNA response. Nature 553, 467–472 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hattori, Y. et al. Transient microglial absence assists postmigratory cortical neurons in correct differentiation. Nat. Commun. 11, 1631 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tune, Y. et al. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. Nat. Mater. 21, 1191–1199 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama, M., Koshiba, T. & Ichinohe, T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat. Commun. 10, 4624 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sekine, Okay. et al. Reelin controls neuronal positioning by selling cell-matrix adhesion by way of inside-out activation of integrin alpha5beta1. Neuron 76, 353–369 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shinoda, T. et al. Elasticity-based boosting of neuroepithelial nucleokinesis by way of oblique vitality switch from mom to daughter. PLoS Biol. 16, e2004426 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goebbels, S. et al. Genetic focusing on of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Okajima, T. et al. Atypical cadherin FAT3 is a novel mediator for morphological adjustments of microglia. eNEuro 7, ENEURO.0056-20.2020 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. USP15 deubiquitinates TUT1 related to RNA metabolism and maintains cerebellar homeostasis. Mol. Cell. Biol. 40, e00098-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuruta, F., Okajima, T., Yano, S. & Chiba, T. Quantification of endosome and lysosome motilities in cultured neurons utilizing fluorescent probes. J. Vis. Exp. 123, 55488 (2017).


    Google Scholar
     

  • Tabata, H. & Nakajima, Okay. Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev. Progress Differ. 50, 507–511 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morrison, H., Younger, Okay., Qureshi, M., Rowe, R. Okay. & Lifshitz, J. Quantitative microglia analyses reveal numerous morphologic responses within the rat cortex after diffuse mind damage. Sci. Rep. 7, 13211 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fenech, M. et al. HUMN venture: detailed description of the scoring standards for the cytokinesis-block micronucleus assay utilizing remoted human lymphocyte cultures. Mutat. Res. 534, 65–75 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mure, Okay., Takeshita, T. & Morimoto, Okay. Categorization of micronuclei by measurement and measurement of every ratio in cytokinesis-block and standard cultures of human lymphocytes uncovered to mitomycin C and colchicine. Environ. Well being Prev. Med. 1, 93–99 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kishi, Y. & Gotoh, Y. Isolation of genetically manipulated neural progenitors and immature neurons from embryonic mouse neocortex by FACS. STAR Protoc. 2, 100540 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haruwaka, Okay. et al. Twin microglia results on blood mind barrier permeability induced by systemic irritation. Nat. Commun. 10, 5816 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takeda, I. et al. Managed activation of cortical astrocytes modulates neuropathic pain-like behaviour. Nat. Commun. 13, 4100 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Graph-Based mostly deep studying for prediction of longitudinal toddler diffusion MRI information. Comput. Diffus. MRI 2019, 133–141 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of problematic areas of the genome. Sci. Rep. 9, 9354 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ENCODE Mission Consortium An built-in encyclopedia of DNA components within the human genome. Nature 489, 57–74 (2012).

    Article 

    Google Scholar
     

  • Quinlan, A. R. & Corridor, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly common goal program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database assets in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Supply hyperlink

    Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *