Marquez-Ropero, M., Benito, E., Plaza-Zabala, A. & Sierra, A. Microglial corpse clearance: classes from macrophages. Entrance Immunol 11, 506 (2020).
D’Mello, C., Le, T. & Swain, M. G. Cerebral microglia recruit monocytes into the mind in response to tumor necrosis factoralpha signaling throughout peripheral organ irritation. J. Neurosci. 29, 2089–2102 (2009).
Chen, X. et al. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 615, 668–677 (2023).
Li, Q. & Barres, B. A. Microglia and macrophages in mind homeostasis and illness. Nat. Rev. Immunol. 18, 225–242 (2018).
Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in physiology and illness. Annu Rev Physiol 79, 619–643 (2017).
Ueno, M. et al. Layer V cortical neurons require microglial assist for survival throughout postnatal improvement. Nat. Neurosci. 16, 543–551 (2013).
Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the variety of neural precursor cells within the growing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).
Aarum, J., Sandberg, Okay., Haeberlein, S. L. & Persson, M. A. Migration and differentiation of neural precursor cells might be directed by microglia. Proc. Natl Acad. Sci. USA 100, 15983–15988 (2003).
Miyamoto, A. et al. Microglia contact induces synapse formation in growing somatosensory cortex. Nat. Commun. 7, 12540 (2016).
Paolicelli, R. C. et al. Synaptic pruning by microglia is important for regular mind improvement. Science 333, 1456–1458 (2011).
Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an exercise and complement-dependent method. Neuron 74, 691–705 (2012).
Badimon, A. et al. Adverse suggestions management of neuronal exercise by microglia. Nature 586, 417–423 (2020).
Wake, H., Moorhouse, A. J., Miyamoto, A. & Nabekura, J. Microglia: actively surveying and shaping neuronal circuit construction and performance. Traits Neurosci. 36, 209–217 (2013).
Prinz, M. & Priller, J. Microglia and mind macrophages within the molecular age: from origin to neuropsychiatric illness. Nat. Rev. Neurosci. 15, 300–312 (2014).
Ginhoux, F. et al. Destiny mapping evaluation reveals that grownup microglia derive from primitive macrophages. Science 330, 841–845 (2010).
Utz, S. G. et al. Early destiny defines microglia and non-parenchymal mind macrophage improvement. Cell 181, 557–573 e518 (2020).
Hattori, Y. et al. CD206+ macrophages transventricularly infiltrate the early embryonic cerebral wall to distinguish into microglia. Cell Rep. 42, 112092 (2023).
Paolicelli, R. C. et al. Microglia states and nomenclature: a area at its crossroads. Neuron 110, 3458–3483 (2022).
Kierdorf, Okay., Masuda, T., Jordao, M. J. C. & Prinz, M. Macrophages at CNS interfaces: ontogeny and performance in well being and illness. Nat. Rev. Neurosci. 20, 547–562 (2019).
Prinz, M., Masuda, T., Wheeler, M. A. & Quintana, F. J. Microglia and central nervous system-associated macrophages-from origin to illness modulation. Annu. Rev. Immunol. 39, 251–277 (2021).
Taketomi, T. & Tsuruta, F. In direction of an understanding of microglia and border-associated macrophages. Biology (Basel) 12, 1091 (2023).
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are extremely dynamic surveillants of mind parenchyma in vivo. Science 308, 1314–1318 (2005).
Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat. Neurosci. 9, 1512–1519 (2006).
Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia straight monitor the practical state of synapses in vivo and decide the destiny of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).
Mosher, Okay. I. et al. Neural progenitor cells regulate microglia capabilities and exercise. Nat. Neurosci. 15, 1485–1487 (2012).
Pasciuto, E. et al. Microglia require CD4 T cells to finish the fetal-to-adult transition. Cell 182, 625–640 e624 (2020).
Crasta, Okay. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53–58 (2012).
Raab, M. et al. ESCRT III repairs nuclear envelope ruptures throughout cell migration to restrict DNA harm and cell loss of life. Science 352, 359–362 (2016).
Denais, C. M. et al. Nuclear envelope rupture and restore throughout most cancers cell migration. Science 352, 353–358 (2016).
Fenech, M. et al. Micronuclei and illness—report of HUMN venture workshop at Rennes 2019 EEMGS convention. Mutat. Res. 850-851, 503133 (2020).
Shi, L., Qalieh, A., Lam, M. M., Keil, J. M. & Kwan, Okay. Y. Sturdy elimination of genome-damaged cells safeguards towards mind somatic aneuploidy following Knl1 deletion. Nat. Commun. 10, 2588 (2019).
Zhang, C. Z. et al. Chromothripsis from DNA harm in micronuclei. Nature 522, 179–184 (2015).
Papathanasiou, S. et al. Heritable transcriptional defects from aberrations of nuclear structure. Nature 619, 184–192 (2023).
Agustinus, A. S. et al. Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176–183 (2023).
Lin, Y. F. et al. Mitotic clustering of pulverized chromosomes from micronuclei. Nature 618, 1041–1048 (2023).
Harding, S. M. et al. Mitotic development following DNA harm permits sample recognition inside micronuclei. Nature 548, 466–470 (2017).
Dou, Z. et al. Cytoplasmic chromatin triggers irritation in senescence and most cancers. Nature 550, 402–406 (2017).
Mackenzie, Okay. J. et al. cGAS surveillance of micronuclei hyperlinks genome instability to innate immunity. Nature 548, 461–465 (2017).
Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments by way of cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).
Yano, S. et al. A MATLAB-based program for three-dimensional quantitative evaluation of micronuclei reveals that neuroinflammation induces micronuclei formation within the mind. Sci. Rep. 11, 18360 (2021).
Sekine, Okay., Honda, T., Kawauchi, T., Kubo, Okay. & Nakajima, Okay. The outermost area of the growing cortical plate is essential for each the change of the radial migration mode and the Dab1-dependent ‘inside-out’ lamination within the neocortex. J. Neurosci. 31, 9426–9439 (2011).
Tabata, H. & Nakajima, Okay. Environment friendly in utero gene switch system to the growing mouse mind utilizing electroporation: visualization of neuronal migration within the growing cortex. Neuroscience 103, 865–872 (2001).
Kubo, Okay. et al. Ectopic Reelin induces neuronal aggregation with a standard birthdate-dependent ‘inside-out’ alignment within the growing neocortex. J. Neurosci. 30, 10953–10966 (2010).
Mo, A. et al. Epigenomic signatures of neuronal range within the mammalian mind. Neuron 86, 1369–1384 (2015).
Frey, T. et al. Age-associated discount of nuclear form dynamics in excitatory neurons of the visible cortex. Getting old Cell 22, e13925 (2023).
Rello-Varona, S. et al. Autophagic removing of micronuclei. Cell Cycle 11, 170–176 (2012).
Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).
Yamamoto, H., Zhang, S. & Mizushima, N. Autophagy genes in biology and illness. Nat. Rev. Genet. 24, 382–400 (2023).
Ma, X. et al. CCT2 is an aggrephagy receptor for clearance of strong protein aggregates. Cell 185, 1325–1345 e1322 (2022).
Jung, S. et al. Evaluation of fractalkine receptor CX(3)CR1 operate by focused deletion and inexperienced fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).
Abe, T. et al. Institution of conditional reporter mouse strains at ROSA26 locus for reside cell imaging. Genesis 49, 579–590 (2011).
Ginhoux, F., Lim, S., Hoeffel, G., Low, D. & Huber, T. Origin and differentiation of microglia. Entrance. Cell Neurosci. 7, 45 (2013).
Bennett, M. L. et al. New instruments for learning microglia within the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).
Fritsch, L. E. et al. Sort I interferon response is mediated by NLRX1-cGAS-STING signaling in mind damage. Entrance. Mol. Neurosci. 15, 852243 (2022).
Marsh, S. E. et al. Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human mind. Nat. Neurosci. 25, 306–316 (2022).
Mason, C. E. et al. Standardizing the following technology of bioinformatics software program improvement with BioHDF (HDF5). Adv. Exp. Med. Biol. 680, 693–700 (2010).
McCarthy, D. J., Chen, Y. & Smyth, G. Okay. Differential expression evaluation of multifactor RNA-Seq experiments with respect to organic variation. Nucleic Acids Res. 40, 4288–4297 (2012).
Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).
Zhang, Y. et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and practical variations with mouse. Neuron 89, 37–53 (2016).
Li, Q. et al. Developmental heterogeneity of microglia and mind myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223 e210 (2019).
Zeisel, A. et al. Mind construction. Cell sorts within the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
Van Hove, H. et al. A single-cell atlas of mouse mind macrophages reveals distinctive transcriptional identities formed by ontogeny and tissue surroundings. Nat. Neurosci. 22, 1021–1035 (2019).
Krupina, Okay., Goginashvili, A. & Cleveland, D. W. Causes and penalties of micronuclei. Curr. Opin. Cell Biol. 70, 91–99 (2021).
Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).
Drieu, A. et al. Parenchymal border macrophages regulate the stream dynamics of the cerebrospinal fluid. Nature 611, 585–593 (2022).
Liu, C. et al. Macrophages mediate the restore of mind vascular rupture by way of direct bodily adhesion and mechanical traction. Immunity 44, 1162–1176 (2016).
Masuda, T. et al. Specification of CNS macrophage subsets happens postnatally in outlined niches. Nature 604, 740–748 (2022).
Ponpuak, M. et al. Secretory autophagy. Curr. Opin. Cell Biol. 35, 106–116 (2015).
Ejlerskov, P. et al. Tubulin polymerization-promoting protein (TPPP/p25alpha) promotes unconventional secretion of alpha-synuclein by way of exophagy by impairing autophagosome-lysosome fusion. J. Biol. Chem. 288, 17313–17335 (2013).
Savina, A., Vidal, M. & Colombo, M. I. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115, 2505–2515 (2002).
Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010).
Tsuboyama, Okay. et al. The ATG conjugation techniques are necessary for degradation of the internal autophagosomal membrane. Science 354, 1036–1041 (2016).
Budnik, V., Ruiz-Canada, C. & Wendler, F. Extracellular vesicles spherical off communication within the nervous system. Nat. Rev. Neurosci. 17, 160–172 (2016).
Christ, L., Raiborg, C., Wenzel, E. M., Campsteijn, C. & Stenmark, H. Mobile capabilities and molecular mechanisms of the ESCRT membrane-scission equipment. Traits Biochem. Sci 42, 42–56 (2017).
Gong, Y. N. et al. ESCRT-III acts downstream of MLKL to control necroptotic cell loss of life and its penalties. Cell 169, 286–300 e216 (2017).
Claude-Taupin, A. et al. ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nat. Cell Biol. 23, 846–858 (2021).
Hayakawa, Okay. et al. Switch of mitochondria from astrocytes to neurons after stroke. Nature 535, 551–555 (2016).
Joshi, A. U. et al. Fragmented mitochondria launched from microglia set off A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22, 1635–1648 (2019).
Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci. 18, 1584–1593 (2015).
Yokoi, A. et al. Mechanisms of nuclear content material loading to exosomes. Sci. Adv. 5, eaax8849 (2019).
Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic goal in inflammatory ailments. Nat. Rev. Immunol. 21, 548–569 (2021).
Gulen, M. F. et al. cGAS-STING drives ageing-related irritation and neurodegeneration. Nature 620, 374–380 (2023).
Paul, B. D., Snyder, S. H. & Bohr, V. A. Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and getting old. Traits Neurosci. 44, 83–96 (2021).
Luteijn, R. D. et al. SLC19A1 transports immunoreactive cyclic dinucleotides. Nature 573, 434–438 (2019).
Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol Cell 75, 372–381.e375 (2019).
Carozza, J. A. et al. Extracellular cGAMP is a most cancers cell-produced immunotransmitter concerned in radiation-induced anti-cancer immunity. Nat Most cancers 1, 184–196 (2020).
Bakhoum, S. F. et al. Chromosomal instability drives metastasis by way of a cytosolic DNA response. Nature 553, 467–472 (2018).
Hattori, Y. et al. Transient microglial absence assists postmigratory cortical neurons in correct differentiation. Nat. Commun. 11, 1631 (2020).
Tune, Y. et al. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. Nat. Mater. 21, 1191–1199 (2022).
Moriyama, M., Koshiba, T. & Ichinohe, T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat. Commun. 10, 4624 (2019).
Sekine, Okay. et al. Reelin controls neuronal positioning by selling cell-matrix adhesion by way of inside-out activation of integrin alpha5beta1. Neuron 76, 353–369 (2012).
Shinoda, T. et al. Elasticity-based boosting of neuroepithelial nucleokinesis by way of oblique vitality switch from mom to daughter. PLoS Biol. 16, e2004426 (2018).
Goebbels, S. et al. Genetic focusing on of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006).
Okajima, T. et al. Atypical cadherin FAT3 is a novel mediator for morphological adjustments of microglia. eNEuro 7, ENEURO.0056-20.2020 (2020).
Kim, J. et al. USP15 deubiquitinates TUT1 related to RNA metabolism and maintains cerebellar homeostasis. Mol. Cell. Biol. 40, e00098-20 (2020).
Tsuruta, F., Okajima, T., Yano, S. & Chiba, T. Quantification of endosome and lysosome motilities in cultured neurons utilizing fluorescent probes. J. Vis. Exp. 123, 55488 (2017).
Tabata, H. & Nakajima, Okay. Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev. Progress Differ. 50, 507–511 (2008).
Morrison, H., Younger, Okay., Qureshi, M., Rowe, R. Okay. & Lifshitz, J. Quantitative microglia analyses reveal numerous morphologic responses within the rat cortex after diffuse mind damage. Sci. Rep. 7, 13211 (2017).
Fenech, M. et al. HUMN venture: detailed description of the scoring standards for the cytokinesis-block micronucleus assay utilizing remoted human lymphocyte cultures. Mutat. Res. 534, 65–75 (2003).
Mure, Okay., Takeshita, T. & Morimoto, Okay. Categorization of micronuclei by measurement and measurement of every ratio in cytokinesis-block and standard cultures of human lymphocytes uncovered to mitomycin C and colchicine. Environ. Well being Prev. Med. 1, 93–99 (1996).
Kishi, Y. & Gotoh, Y. Isolation of genetically manipulated neural progenitors and immature neurons from embryonic mouse neocortex by FACS. STAR Protoc. 2, 100540 (2021).
Haruwaka, Okay. et al. Twin microglia results on blood mind barrier permeability induced by systemic irritation. Nat. Commun. 10, 5816 (2019).
Takeda, I. et al. Managed activation of cortical astrocytes modulates neuropathic pain-like behaviour. Nat. Commun. 13, 4100 (2022).
Kim, J. et al. Graph-Based mostly deep studying for prediction of longitudinal toddler diffusion MRI information. Comput. Diffus. MRI 2019, 133–141 (2019).
Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: identification of problematic areas of the genome. Sci. Rep. 9, 9354 (2019).
ENCODE Mission Consortium An built-in encyclopedia of DNA components within the human genome. Nature 489, 57–74 (2012).
Quinlan, A. R. & Corridor, I. M. BEDTools: a versatile suite of utilities for evaluating genomic options. Bioinformatics 26, 841–842 (2010).
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).
Liao, Y., Smyth, G. Okay. & Shi, W. featureCounts: an environment friendly common goal program for assigning sequence reads to genomic options. Bioinformatics 30, 923–930 (2014).
Perez-Riverol, Y. et al. The PRIDE database assets in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022).